Skip to content

Latest commit

 

History

History
261 lines (209 loc) · 9.63 KB

LLM-quantization.md

File metadata and controls

261 lines (209 loc) · 9.63 KB

LLM Quantization Documentation

Swift supports the use of awq, gptq, bnb, hqq, and eetq technologies to quantize models. Among them, awq and gptq quantization technologies support vllm for accelerated inference, requiring the use of a calibration dataset for better quantization performance, but with slower quantization speed. On the other hand, bnb, hqq, and eetq do not require calibration data and have faster quantization speed. All five quantization methods support qlora fine-tuning.

Quantization using awq and gptq requires the use of 'swift export', while bnb, hqq, and eetq can be quickly quantized during sft and infer.

From the perspective of vllm inference acceleration support, it is more recommended to use awq and gptq for quantization. From the perspective of quantization effectiveness, it is more recommended to use awq, hqq, and gptq for quantization. And from the perspective of quantization speed, it is more recommended to use hqq for quantization.

Table of Contents

Environment Preparation

GPU devices: A10, 3090, V100, A100 are all supported.

# Install ms-swift
git clone https://github.com/modelscope/swift.git
cd swift
pip install -e '.[llm]'

# Using AWQ quantization:
# AutoAWQ and CUDA versions have a corresponding relationship, please select the version according to `https://github.com/casper-hansen/AutoAWQ`
pip install autoawq -U

# Using GPTQ quantization:
# Auto_GPTQ and CUDA versions have a corresponding relationship, please select the version according to `https://github.com/PanQiWei/AutoGPTQ#quick-installation`
pip install auto_gptq -U

# Using bnb quantization:
pip install bitsandbytes -U

# Using hqq quantization:
# Requires transformers version >4.40, install from source
pip install git+https://github.com/huggingface/transformers pip install hqq
# If compatibility with training is desired, install peft from source
pip install git+https://github.com/huggingface/peft.git

# Using eetq quantization:
# Requires transformers version >4.40, install from source
pip install git+https://github.com/huggingface/transformers
# See https://github.com/NetEase-FuXi/EETQ for reference
git clone https://github.com/NetEase-FuXi/EETQ.git cd EETQ/ git submodule update --init --recursive pip install .
# If compatibility with training is desired, install peft from source
pip install git+https://github.com/huggingface/peft.git

# Environment alignment (usually not needed. If you encounter errors, you can run the code below, the repository uses the latest environment for testing)
pip install -r requirements/framework.txt -U
pip install -r requirements/llm.txt -U

Original Model

awq, gptq

Here we demonstrate AWQ and GPTQ quantization on the qwen1half-7b-chat model.

# AWQ-INT4 quantization (takes about 18 minutes using A100, memory usage: 13GB)
# If OOM occurs during quantization, you can appropriately reduce `--quant_n_samples` (default 256) and `--quant_seqlen` (default 2048).
# GPTQ-INT4 quantization (takes about 20 minutes using A100, memory usage: 7GB)

# AWQ: Use `alpaca-zh alpaca-en sharegpt-gpt4-mini` as the quantization dataset
CUDA_VISIBLE_DEVICES=0 swift export \
    --model_type qwen1half-7b-chat --quant_bits 4 \
    --dataset alpaca-zh alpaca-en sharegpt-gpt4-mini --quant_method awq

# GPTQ: Use `alpaca-zh alpaca-en sharegpt-gpt4-mini` as the quantization dataset
# For GPTQ quantization, please first refer to this issue: https://github.com/AutoGPTQ/AutoGPTQ/issues/439
OMP_NUM_THREADS=14 CUDA_VISIBLE_DEVICES=0 swift export \
    --model_type qwen1half-7b-chat --quant_bits 4 \
    --dataset alpaca-zh alpaca-en sharegpt-gpt4-mini --quant_method gptq

# AWQ: Use custom quantization dataset
# Same for GPTQ
CUDA_VISIBLE_DEVICES=0 swift export \
    --model_type qwen1half-7b-chat --quant_bits 4 \
    --dataset xxx.jsonl \
    --quant_method awq

# Inference using swift quantized model
# AWQ
CUDA_VISIBLE_DEVICES=0 swift infer \
    --model_type qwen1half-7b-chat \
    --model_id_or_path qwen1half-7b-chat-awq-int4
# GPTQ
CUDA_VISIBLE_DEVICES=0 swift infer \
    --model_type qwen1half-7b-chat \
    --model_id_or_path qwen1half-7b-chat-gptq-int4

# Inference using original model
CUDA_VISIBLE_DEVICES=0 swift infer --model_type qwen1half-7b-chat

bnb, hqq, eetq

For bnb, hqq, and eetq, we only need to use swift infer for rapid quantization and inference.

CUDA_VISIBLE_DEVICES=0 swift infer \
    --model_type qwen1half-7b-chat \
    --quant_method bnb \
    --quantization_bit 4

CUDA_VISIBLE_DEVICES=0 swift infer \
    --model_type qwen1half-7b-chat \
    --quant_method hqq \
    --quantization_bit 4

CUDA_VISIBLE_DEVICES=0 swift infer \
    --model_type qwen1half-7b-chat \
    --quant_method eetq \
    --dtype fp16

Fine-tuned Model

Assume you fine-tuned qwen1half-4b-chat using LoRA, and the model weights directory is: output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx.

Here we only introduce using the AWQ technique to quantize the fine-tuned model. Using GPTQ for quantization would be similar.

Merge-LoRA & Quantization

# Use `alpaca-zh alpaca-en sharegpt-gpt4-mini` as the quantization dataset
CUDA_VISIBLE_DEVICES=0 swift export \
    --ckpt_dir 'output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx' \
    --merge_lora true --quant_bits 4 \
    --dataset alpaca-zh alpaca-en sharegpt-gpt4-mini --quant_method awq

# Use the dataset from fine-tuning as the quantization dataset
CUDA_VISIBLE_DEVICES=0 swift export \
    --ckpt_dir 'output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx' \
    --merge_lora true --quant_bits 4 \
    --load_dataset_config true --quant_method awq

Inference using quantized model

# AWQ/GPTQ quantized models support VLLM inference acceleration. They also support model deployment.
CUDA_VISIBLE_DEVICES=0 swift infer --ckpt_dir 'output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx-merged-awq-int4'

Deploying the quantized model

Server:

CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir 'output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx-merged-awq-int4'

Testing:

curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen1half-4b-chat",
"messages": [{"role": "user", "content": "How to fall asleep at night?"}],
"max_tokens": 256,
"temperature": 0
}'

QLoRA

awq, gptq

If you want to fine-tune the models quantized with awq and gptq using QLoRA, you need to perform pre-quantization. For example, you can use swift export to quantize the original model. Then, for fine-tuning, you need to specify --quant_method to specify the corresponding quantization method using the following command:

# awq
CUDA_VISIBLE_DEVICES=0 swift sft \
    --model_type qwen1half-7b-chat \
    --model_id_or_path qwen1half-7b-chat-awq-int4 \
    --quant_method awq \
    --sft_type lora \
    --dataset alpaca-zh#5000 \

# gptq
CUDA_VISIBLE_DEVICES=0 swift sft \
    --model_type qwen1half-7b-chat \
    --model_id_or_path qwen1half-7b-chat-gptq-int4 \
    --quant_method gptq \
    --sft_type lora \
    --dataset alpaca-zh#5000 \

bnb, hqq, eetq

If you want to use bnb, hqq, eetq for QLoRA fine-tuning, you need to specify --quant_method and --quantization_bit during training:

# bnb
CUDA_VISIBLE_DEVICES=0 swift sft \
    --model_type qwen1half-7b-chat \
    --sft_type lora \
    --dataset alpaca-zh#5000 \
    --quant_method bnb \
    --quantization_bit 4 \
    --dtype fp16 \

# hqq
CUDA_VISIBLE_DEVICES=0 swift sft \
    --model_type qwen1half-7b-chat \
    --sft_type lora \
    --dataset alpaca-zh#5000 \
    --quant_method hqq \
    --quantization_bit 4 \

# eetq
CUDA_VISIBLE_DEVICES=0 swift sft \
    --model_type qwen1half-7b-chat \
    --sft_type lora \
    --dataset alpaca-zh#5000 \
    --quant_method eetq \
    --dtype fp16 \

Note

  • hqq supports more customizable parameters, such as specifying different quantization configurations for different network layers. For details, please see Command Line Arguments.
  • eetq quantization uses 8-bit quantization, and there's no need to specify quantization_bit. Currently, bf16 is not supported; you need to specify dtype as fp16.
  • Currently, eetq's qlora speed is relatively slow; it is recommended to use hqq instead. For reference, see the issue.

Pushing Models

Assume you fine-tuned qwen1half-4b-chat using LoRA, and the model weights directory is: output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx.

# Push the original quantized model
CUDA_VISIBLE_DEVICES=0 swift export \
    --model_type qwen1half-7b-chat \
    --model_id_or_path qwen1half-7b-chat-gptq-int4 \
    --push_to_hub true \
    --hub_model_id qwen1half-7b-chat-gptq-int4 \
    --hub_token '<your-sdk-token>'

# Push LoRA incremental model
CUDA_VISIBLE_DEVICES=0 swift export \
    --ckpt_dir output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx \
    --push_to_hub true \
    --hub_model_id qwen1half-4b-chat-lora \
    --hub_token '<your-sdk-token>'

# Push merged model
CUDA_VISIBLE_DEVICES=0 swift export \
    --ckpt_dir output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx \
    --push_to_hub true \
    --hub_model_id qwen1half-4b-chat-lora \
    --hub_token '<your-sdk-token>' \
    --merge_lora true

# Push quantized model
CUDA_VISIBLE_DEVICES=0 swift export \
    --ckpt_dir output/qwen1half-4b-chat/vx-xxx/checkpoint-xxx \
    --push_to_hub true \
    --hub_model_id qwen1half-4b-chat-lora \
    --hub_token '<your-sdk-token>' \
    --merge_lora true \
    --quant_bits 4