Skip to content

Latest commit

 

History

History
620 lines (483 loc) · 21.8 KB

deepvariant-training-case-study.md

File metadata and controls

620 lines (483 loc) · 21.8 KB

Advanced Case Study: Train a customized SNP and small indel variant caller for BGISEQ-500 data.

DeepVariant is an analysis pipeline that uses a deep neural network to call genetic variants from next-generation DNA sequencing (NGS) data. While DeepVariant is highly accurate for many types of NGS data, some users may be interested in training custom deep learning models that have been optimized for very specific data.

This case study describes one way to train such a custom model using a GPU, in this case for BGISEQ-500 data.

Please note that there is not yet a production-grade training pipeline. This is just one example of how to train a custom model, and is neither the fastest nor the cheapest possible configuration. The resulting model also does not represent the greatest achievable accuracy for BGISEQ-500 data.

High level summary of result

We demonstrated that by training on 1 replicate of BGISEQ-500 whole genome data (everything except for chromosome 20-22), we can significantly improve the accuracy comparing to the WGS model as a baseline:

  • Indel F1 94.1615% --> 98.1937%
  • SNP F1: 99.8785% --> 99.9042%

This tutorial is meant as an example for training; all the other processing in this tutorial were done serially with no pipeline optimization.

Request a machine

For this case study, we use a GPU machine with 16 vCPUs. You can request this machine on Google Cloud using the following command:

host="${USER}-deepvariant-vm"
zone="us-west1-b"

gcloud compute instances create ${host} \
    --scopes "compute-rw,storage-full,cloud-platform" \
    --maintenance-policy "TERMINATE" \
    --accelerator=type=nvidia-tesla-p100,count=1 \
    --image-family "ubuntu-2004-lts" \
    --image-project "ubuntu-os-cloud" \
    --machine-type "n1-standard-16" \
    --boot-disk-size "300" \
    --zone "${zone}" \
    --min-cpu-platform "Intel Skylake"

After a minute or two, your VM should be ready and you can ssh into it using the following command:

gcloud compute ssh ${host} --zone ${zone}

Once you have logged in, set the variables:

YOUR_PROJECT=REPLACE_WITH_YOUR_PROJECT
OUTPUT_GCS_BUCKET=REPLACE_WITH_YOUR_GCS_BUCKET

BUCKET="gs://deepvariant"
VERSION="1.6.1"
DOCKER_IMAGE="google/deepvariant:${VERSION}"

MODEL_BUCKET="${BUCKET}/models/DeepVariant/${VERSION}/DeepVariant-inception_v3-${VERSION}+data-wgs_standard"
GCS_PRETRAINED_WGS_MODEL="${MODEL_BUCKET}/model.ckpt"

OUTPUT_BUCKET="${OUTPUT_GCS_BUCKET}/customized_training"
TRAINING_DIR="${OUTPUT_BUCKET}/training_dir"

BASE="${HOME}/training-case-study"
DATA_BUCKET=gs://deepvariant/training-case-study/BGISEQ-HG001

INPUT_DIR="${BASE}/input"
BIN_DIR="${INPUT_DIR}/bin"
DATA_DIR="${INPUT_DIR}/data"
OUTPUT_DIR="${BASE}/output"
LOG_DIR="${OUTPUT_DIR}/logs"
SHUFFLE_SCRIPT_DIR="${HOME}/deepvariant/tools"

REF="${DATA_DIR}/ucsc_hg19.fa"
BAM_CHR1="${DATA_DIR}/BGISEQ_PE100_NA12878.sorted.chr1.bam"
BAM_CHR20="${DATA_DIR}/BGISEQ_PE100_NA12878.sorted.chr20.bam"
BAM_CHR21="${DATA_DIR}/BGISEQ_PE100_NA12878.sorted.chr21.bam"
TRUTH_VCF="${DATA_DIR}/HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer_chrs_FIXED.vcf.gz"
TRUTH_BED="${DATA_DIR}/HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_nosomaticdel_chr.bed"

N_SHARDS=16

Download binaries and data

Create directories:

mkdir -p "${OUTPUT_DIR}"
mkdir -p "${BIN_DIR}"
mkdir -p "${DATA_DIR}"
mkdir -p "${LOG_DIR}"

Copy data

gsutil -m cp ${DATA_BUCKET}/BGISEQ_PE100_NA12878.sorted.chr*.bam* "${DATA_DIR}"
gsutil -m cp -r "${DATA_BUCKET}/ucsc_hg19.fa*" "${DATA_DIR}"
gsutil -m cp -r "${DATA_BUCKET}/HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_*" "${DATA_DIR}"

Download extra packages

sudo apt -y update
sudo apt -y install parallel
curl -O https://raw.githubusercontent.com/google/deepvariant/r1.6.1/scripts/install_nvidia_docker.sh
bash -x install_nvidia_docker.sh

Run make_examples in “training” mode for training and validation sets.

Create examples in "training" mode (which means these tensorflow.Examples will contain a label field).

In this tutorial, we create examples on one replicate of HG001 sequenced by BGISEQ-500 provided on the Genome In a Bottle FTP site.

In this tutorial, we will split the genome up into the following datasets:

chrom Name Description
chr1 Training Set Examples used to train our model.
chr21 Validation / Tune Set Examples used to evaluate the performance of our model during training.
chr20 Test Set Examples reserved for testing performance of our trained model.

Note that normally, the training dataset will be much larger (e.g. chr1-19), rather than just a single chromosome. We use just chr1 here to demonstrate how customized training works.

For the definition of these 3 sets in commonly used machine learning terminology, please refer to Machine Learning Glossary.

Training set

First, to set up, lets pull the docker images.

sudo docker pull ${DOCKER_IMAGE}     # Standard CPU Docker Image.
sudo docker pull ${DOCKER_IMAGE}-gpu # GPU-enabled Docker image.

The make_examples step doesn't use GPU, so we will not require the GPU-enabled image.

( time seq 0 $((N_SHARDS-1)) | \
  parallel --halt 2 --line-buffer \
    sudo docker run \
      -v ${HOME}:${HOME} \
      ${DOCKER_IMAGE} \
      make_examples \
      --mode training \
      --ref "${REF}" \
      --reads "${BAM_CHR1}" \
      --examples "${OUTPUT_DIR}/training_set.with_label.tfrecord@${N_SHARDS}.gz" \
      --truth_variants "${TRUTH_VCF}" \
      --confident_regions "${TRUTH_BED}" \
      --task {} \
      --regions "'chr1'" \
      --channels "insert_size" \
) 2>&1 | tee "${LOG_DIR}/training_set.with_label.make_examples.log"

This took 20m14s.

Starting in v1.4.0, we added an extra channel in our WGS setting using the --channels "insert_size" flag. And, the make_examples step creates *.example_info.json files. For example, you can see it here:

cat "${OUTPUT_DIR}/training_set.with_label.tfrecord-00000-of-00016.gz.example_info.json"
{
  "version": "1.6.1",
  "shape": [100, 221, 7],
  "channels": [1, 2, 3, 4, 5, 6, 19]
}

Depending on your data type, you might want to tweak the flags for the make_examples step, which can result in different shape of the output examples.

We will want to shuffle this on Dataflow later, so we copy the data to GCS bucket first:

gsutil -m cp ${OUTPUT_DIR}/training_set.with_label.tfrecord-?????-of-00016.gz* \
  ${OUTPUT_BUCKET}

NOTE: If you prefer shuffling locally, please take a look at this user-provided shuffler option: #360 (comment)

Validation set

( time seq 0 $((N_SHARDS-1)) | \
  parallel --halt 2 --line-buffer \
    sudo docker run \
      -v /home/${USER}:/home/${USER} \
      ${DOCKER_IMAGE} \
      make_examples \
      --mode training \
      --ref "${REF}" \
      --reads "${BAM_CHR21}" \
      --examples "${OUTPUT_DIR}/validation_set.with_label.tfrecord@${N_SHARDS}.gz" \
      --truth_variants "${TRUTH_VCF}" \
      --confident_regions "${TRUTH_BED}" \
      --task {} \
      --regions "'chr21'" \
      --channels "insert_size" \
) 2>&1 | tee "${LOG_DIR}/validation_set.with_label.make_examples.log"

This took: 5m31.122s.

Copy to GCS bucket:

gsutil -m cp ${OUTPUT_DIR}/validation_set.with_label.tfrecord-?????-of-00016.gz* \
  ${OUTPUT_BUCKET}

Shuffle each set of examples and generate a data configuration file for each.

Shuffling the tensorflow.Examples is an important step for training a model. In our training logic, we shuffle examples globally using a preprocessing step.

First, if you have run this step before, and want to rerun it, you might want to consider cleaning up previous data first to avoid confusion:

# (Optional) Clean up existing files.
gsutil -m rm -f "${OUTPUT_BUCKET}/training_set.with_label.shuffled-?????-of-?????.tfrecord.gz"
gsutil rm -f "${OUTPUT_BUCKET}/training_set.dataset_config.pbtxt"
gsutil -m rm -f "${OUTPUT_BUCKET}/validation_set.with_label.shuffled-?????-of-?????.tfrecord.gz"
gsutil rm -f "${OUTPUT_BUCKET}/validation_set.dataset_config.pbtxt"
gsutil rm -f "${OUTPUT_BUCKET}/example_info.json"

Here we provide examples for running on Cloud Dataflow Runner and also DirectRunner. Beam can also use other runners, such as Spark Runner.

First, create a virtual environment to install beam on your machine.

sudo apt install -y python3.8-venv
# Create a virtualenv
python3 -m venv beam

# Activate the virtualenv
. beam/bin/activate

Consult the instructions at https://beam.apache.org/get-started/quickstart-py/ if you run into any issues.

Then, get the script that performs shuffling:

mkdir -p ${SHUFFLE_SCRIPT_DIR}
wget https://raw.githubusercontent.com/google/deepvariant/r1.6.1/tools/shuffle_tfrecords_beam.py -O ${SHUFFLE_SCRIPT_DIR}/shuffle_tfrecords_beam.py

Next, we shuffle the data using DataflowRunner. Before that, please make sure you enable Dataflow API for your project: http://console.cloud.google.com/flows/enableapi?apiid=dataflow.

To access gs:// path, make sure you run this in your virtual environment:

sudo apt -y update && sudo apt -y install python3-pip
pip3 install --upgrade pip
pip3 install setuptools --upgrade
pip3 install apache_beam[gcp]==2.50.0  # 2.51.0 didn't work in my run.
pip3 install tensorflow  # For parsing tf.Example in shuffle_tfrecords_beam.py.

Shuffle using Dataflow.

time python3 ${SHUFFLE_SCRIPT_DIR}/shuffle_tfrecords_beam.py \
  --project="${YOUR_PROJECT}" \
  --input_pattern_list="${OUTPUT_BUCKET}"/training_set.with_label.tfrecord-?????-of-00016.gz \
  --output_pattern_prefix="${OUTPUT_BUCKET}/training_set.with_label.shuffled" \
  --output_dataset_name="HG001" \
  --output_dataset_config_pbtxt="${OUTPUT_BUCKET}/training_set.dataset_config.pbtxt" \
  --job_name=shuffle-tfrecords \
  --runner=DataflowRunner \
  --staging_location="${OUTPUT_BUCKET}/staging" \
  --temp_location="${OUTPUT_BUCKET}/tempdir" \
  --save_main_session \
  --region us-east1

Then, you should be able to see the run on: https://console.cloud.google.com/dataflow?project=YOUR_PROJECT

In order to have the best performance, you might need extra resources such as machines or IPs within a region. That will not be in the scope of this case study here.

The output path can be found in the dataset_config file by:

gsutil cat "${OUTPUT_BUCKET}/training_set.dataset_config.pbtxt"

In the output, the tfrecord_path should be valid paths in gs://.

# Generated by shuffle_tfrecords_beam.py
# class0: 44516
# class1: 173673
# class2: 124569
#
# --input_pattern_list=OUTPUT_BUCKET/training_set.with_label.tfrecord-?????-of-00016.gz
# --output_pattern_prefix=OUTPUT_BUCKET/training_set.with_label.shuffled
#

name: "HG001"
tfrecord_path: "OUTPUT_GCS_BUCKET/training_set.with_label.shuffled-?????-of-?????.tfrecord.gz"
num_examples: 342758

We can shuffle the validation set locally using DirectRunner. Adding --direct_num_workers=0 sets the number of threads/subprocess to the number of cores of the machine where the pipeline is running.

time python3 ${SHUFFLE_SCRIPT_DIR}/shuffle_tfrecords_beam.py \
  --project="${YOUR_PROJECT}" \
  --input_pattern_list="${OUTPUT_DIR}"/validation_set.with_label.tfrecord-?????-of-00016.gz \
  --output_pattern_prefix="${OUTPUT_DIR}/validation_set.with_label.shuffled" \
  --output_dataset_name="HG001" \
  --output_dataset_config_pbtxt="${OUTPUT_DIR}/validation_set.dataset_config.pbtxt" \
  --job_name=shuffle-tfrecords \
  --runner=DirectRunner \
  --direct_num_workers=0

Here is the validation_set:

cat "${OUTPUT_DIR}/validation_set.dataset_config.pbtxt"
# Generated by shuffle_tfrecords_beam.py
# class0: 5591
# class1: 31854
# class2: 21956
#
# --input_pattern_list=OUTPUT_DIR/validation_set.with_label.tfrecord-?????-of-00016.gz
# --output_pattern_prefix=OUTPUT_DIR/validation_set.with_label.shuffled
#

name: "HG001"
tfrecord_path: "OUTPUT_DIR/validation_set.with_label.shuffled-?????-of-?????.tfrecord.gz"
num_examples: 59401

Fetch a config file

Before we can begin training, we will need a configuration file containing training parameters. Parameters within this training file can be overridden when we run train by passing --config.<param>=<value>.

curl https://raw.githubusercontent.com/google/deepvariant/r1.6.1/deepvariant/dv_config.py > dv_config.py

Start train

NOTE: all parameters below are used as an example. They are not optimized for this dataset, and are not recommended as the best default either.

( time sudo docker run --gpus 1 \
    -v /home/${USER}:/home/${USER} \
    -w /home/${USER} \
    ${DOCKER_IMAGE}-gpu \
    train \
    --config=dv_config.py:base \
    --config.train_dataset_pbtxt="${OUTPUT_BUCKET}/training_set.dataset_config.pbtxt" \
    --config.tune_dataset_pbtxt="${OUTPUT_DIR}/validation_set.dataset_config.pbtxt" \
    --config.init_checkpoint=gs://deepvariant/models/DeepVariant/1.6.1/checkpoints/wgs/deepvariant.wgs.ckpt \
    --config.num_epochs=10 \
    --config.learning_rate=0.0001 \
    --config.num_validation_examples=0 \
    --experiment_dir=${TRAINING_DIR} \
    --strategy=mirrored \
    --config.batch_size=512 \
) > "${LOG_DIR}/train.log" 2>&1 &

Once training starts, you should see a summary of your training dataset:

Training Examples: 342758
Batch Size: 512
Epochs: 10
Steps per epoch: 669
Steps per tune: 116
Num train steps: 6690

As training runs, the validation/tune dataset will be evaluated at the end of each epoch, and every n training steps specified by --config.tune_every_steps. You can lower --config.tune_every_steps to perform evaluation more frequently.

Checkpoints are stored whenever the tune/f1_weighted metric improves when evaluating the tune dataset. In this way, the last checkpoint stored will always be the best performing checkpoint. The best performing checkpoint metric can be configured using --config.best_checkpoint_metric.

We have tested training with 1 and 2 GPUs and observed the following runtimes:

n GPUs Time
1 89m39.451s
2 54m8.163s

Once training is complete, the following command can be used list checkpoints:

gsutil ls ${TRAINING_DIR}/checkpoints/

The best checkpoint can be retrieved using the following command:

BEST_CHECKPOINT=$(gsutil cat ${TRAINING_DIR}/checkpoints/checkpoint | sed -n 's/model_checkpoint_path: "\(.*\)"/\1/p')
BEST_CHECKPOINT=${TRAINING_DIR}/checkpoints/${BEST_CHECKPOINT}

(Optional) Use TensorBoard to visualize progress

We can start a TensorBoard to visualize the progress of training better. This step is optional.

You'll want to let train run for a while before you start a TensorBoard. (You can start a TensorBoard immediately, but you just won't see the metrics summary until later.) We did this through a Google Cloud Shell from https://console.cloud.google.com, on the top right:

Shell

This opens up a terminal at the bottom of the browser page, then run:

# Change to your OUTPUT_BUCKET from earlier.
OUTPUT_BUCKET="${OUTPUT_GCS_BUCKET}/customized_training"
TRAINING_DIR="${OUTPUT_BUCKET}/training_dir"
tensorboard --logdir ${TRAINING_DIR} --port=8080

After it started, I clicked on the “Web Preview” on the top right of the mini terminal:

WebPreview

And clicked on "Preview on port 8080":

PreviewOnPort

Once it starts, you can see many metrics, including accuracy, speed, etc. You will need to wait for train to run for a while before the plots will appear.

Test the model

Now that we have performed training, we can test the performance of the new model using our holdout dataset (chr20).

The following one-step command can be used to call DeepVariant and run our newly trained model:

sudo docker run --gpus all \
  -v /home/${USER}:/home/${USER} \
  "${DOCKER_IMAGE}-gpu" \
  run_deepvariant \
  --model_type WGS \
  --customized_model "${BEST_CHECKPOINT}" \
  --ref "${REF}" \
  --reads "${BAM_CHR20}" \
  --regions "chr20" \
  --output_vcf "${OUTPUT_DIR}/test_set.vcf.gz" \
  --num_shards=${N_SHARDS}

In v1.4.0, by using --model_type WGS, run_deepvariant will automatically add insert_size as an extra channel in the make_examples step. So we don't need to add it in --make_examples_extra_args.

When the call_variants step is run, you might see messages like:

E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:1278] could not retrieve CUDA device count: CUDA_ERROR_NOT_INITIALIZED: initialization error

You can use nvidia-smi to confirm whether the GPUs are used. If so, you can ignore the message.

Once this is done, we have the final callset in VCF format here: ${OUTPUT_DIR}/test_set.vcf.gz. Next step is to run hap.py to complete the evaluation on chromosome 20:

sudo docker pull jmcdani20/hap.py:v0.3.12

time sudo docker run -it \
-v "${DATA_DIR}:${DATA_DIR}" \
-v "${OUTPUT_DIR}:${OUTPUT_DIR}" \
jmcdani20/hap.py:v0.3.12 /opt/hap.py/bin/hap.py \
  "${TRUTH_VCF}" \
  "${OUTPUT_DIR}/test_set.vcf.gz" \
  -f "${TRUTH_BED}" \
  -r "${REF}" \
  -o "${OUTPUT_DIR}/chr20-calling.happy.output" \
  -l chr20 \
  --engine=vcfeval \
  --pass-only

The output of hap.py is here:

[I] Total VCF records:         3775119
[I] Non-reference VCF records: 3775119
[W] overlapping records at chr20:60402030 for sample 0
[W] Variants that overlap on the reference allele: 1
[I] Total VCF records:         132914
[I] Non-reference VCF records: 96273
2023-10-14 20:09:55,773 WARNING  Creating template for vcfeval. You can speed this up by supplying a SDF template that corre
sponds to /home/pichuan/training-case-study/input/data/ucsc_hg19.fa
Benchmarking Summary:
Type Filter  TRUTH.TOTAL  TRUTH.TP  TRUTH.FN  QUERY.TOTAL  QUERY.FP  QUERY.UNK  FP.gt  FP.al  METRIC.Recall  METRIC.Precision  METRIC.Frac_NA  METRIC.F1_Score  TRUTH.TOTAL.TiTv_ratio  QUERY.TOTAL.TiTv_ratio  TRUTH.TOTAL.het_hom_ratio  QUERY.TOTAL.het_hom_ratio
INDEL    ALL        10023      9811       212        19366       155       9002    103     27       0.978849          0.985044        0.464835         0.981937                     NaN                     NaN                   1.547658                   2.096514
INDEL   PASS        10023      9811       212        19366       155       9002    103     27       0.978849          0.985044        0.464835         0.981937                     NaN                     NaN                   1.547658                   2.096514
  SNP    ALL        66237     66180        57        77926        70      11639     10      5       0.999139          0.998944        0.149360         0.999042                2.284397                2.199384                   1.700387                   1.781372
  SNP   PASS        66237     66180        57        77926        70      11639     10      5       0.999139          0.998944        0.149360         0.999042                2.284397                2.199384                   1.700387                   1.781372

To summarize, the accuracy is:

Type TRUTH.TP TRUTH.FN QUERY.FP METRIC.Recall METRIC.Precision METRIC.F1_Score
INDEL 9811 212 155 0.978849 0.985044 0.981937
SNP 66180 57 70 0.999139 0.998944 0.999042

The baseline we're comparing to is to directly use the WGS model to make the calls, using this command:

sudo docker run --gpus all \
  -v /home/${USER}:/home/${USER} \
  ${DOCKER_IMAGE}-gpu \
  run_deepvariant \
  --model_type WGS \
  --ref "${REF}" \
  --reads "${BAM_CHR20}" \
  --regions "chr20" \
  --output_vcf "${OUTPUT_DIR}/baseline.vcf.gz" \
  --num_shards=${N_SHARDS}

Baseline:

Type TRUTH.TP TRUTH.FN QUERY.FP METRIC.Recall METRIC.Precision METRIC.F1_Score
INDEL 9620 403 823 0.959792 0.924112 0.941615
SNP 66159 78 83 0.998822 0.998748 0.998785

Additional things to try

Parameters to tune

Starting from the default setting of this tutorial is a good starting point, but this training case study is by no means the best setting. Training is both a science and an art. There are many knobs that we could potentially tune. Users might be able to use different parameters to train a more accurate model even with the same data, such as batch_size, learning_rate, learning_rate_decay_factor in modeling.py.

Downsampling the BAM file to generate more training examples

When generating the training set, we can make some adjustment to create more training data. For example, when we train the released WGS model for DeepVariant, for each BAM file, we created an extra set of training examples using --downsample_fraction=0.5, which downsamples the reads and creates training examples with lower coverage. We found that this makes the trained model more robust.